Ann'ee~2005-2006 $1^{\`ere}S$

Chap I: Polynômes

I. Trinôme du second degré

Définition 1 : Un trinôme du second degré est une expression de la forme $ax^2 + bx + c$, avec $a \neq 0$.

Remarque : Un trinôme du second degré est défini sur R.

Nous allons déterminer une technique pour résoudre toutes les équations du type $ax^2 + bx + c = 0$ appelées équation du second degré.

1) Forme canonique du trinôme

On sait résoudre les équations suivantes :

- $x^2 3 = 0$
- $(x+2)^2 5 = 0$
- $3\left((x+1)^2 \frac{2}{3}\right) = 0$

En fait on a $3\left((x+1)^2 - \frac{2}{3}\right) = 3x^2 + 6x + 1$ mais les deux formes ne sont pas toutes les deux aussi pratique pour résoudre $3x^2 + 6x + 1 = 0$ qui est souvent la forme sous laquelle l'équation apparaît. La forme $3\left((x+1)^2 - \frac{2}{3}\right)$ s'appelle la forme canonique du trinôme $3x^2 + 6x + 1$.

L'idée intéressante c'est qu'on peut toujours résoudre une équation du second degré lorsque le trinôme est sous forme canonique et on peut toujours mettre un trinôme sous forme canonique.

Propriété 1 : On a
$$ax^2 + bx + c = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a^2} \right].$$

 \longrightarrow démonstration

2) Résolution de l'équation $ax^2 + bx + c = 0$, $(a, b, c) \in \mathbb{R}^* \times \mathbb{R}^2$

Pour résoudre $ax^2 + bx + c = 0$ c'est donc le signe de $b^2 - 4ac$ qui nous intéresse.

Définition 2: Soit $P(x) = ax^2 + bx + c$, on appelle discriminant de P(x) = 0, le nombre $\Delta = b^2 - 4ac$.

On a alors:

$$ax^2 + bx + c = 0 \Leftrightarrow \left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} = 0 \text{ car } a \neq 0.$$

- Si $\Delta < 0$, $\left(x + \frac{b}{2a}\right)^2 \frac{\Delta}{4a^2} > 0$ donc l'équation n'a pas de solutions dans \mathbb{R} .
- Si $\Delta = 0$, $\left(x + \frac{b}{2a}\right)^2 = 0$ d'où $x = -\frac{b}{2a}$ est racine double.
- Si $\Delta > 0$, $\Delta = \sqrt{\Delta^2}$ d'où $P(x) = 0 \Leftrightarrow \left(x + \frac{b}{2a}\right)^2 \frac{\sqrt{\Delta^2}}{4a^2} = 0$ soit $\left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right) \left(x + \frac{b}{2a} \frac{\sqrt{\Delta}}{2a}\right) = 0$ donc $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$ sont les solutions sur \mathbb{R} .

 $1^{\grave{e}re}S$ Année 2005-2006

Théorème 1 : Soit S l'ensemble des solutions de $ax^2 + bx + c = 0$.

Si
$$\Delta < 0$$
, $S = \emptyset$.
Si $\Delta = 0$, $S = \left\{-\frac{b}{2a}\right\}$.
Si $\Delta > 0$, $S = \left\{\frac{-b - \sqrt{\Delta}}{2a}; \frac{-b + \sqrt{\Delta}}{2a}\right\}$.

Remarque : Si a et c sont de signes contraires, $\Delta > 0$.

Exercice 1 : Résoudre les équations suivantes :

- $x^2 3x + 2 = 0$,
- $2x^2 + 4x + 2 = 0$,
- $-2x^2 3x + 4 = 0$, $-3x^2 + 2x 2 = 0$

--- parler des éguations bicarrés et irrationnelles

3) Factorisation et racines

Proposition 1: (HP) Si le trinôme $ax^2 + bx + c$ admet deux racines x_1 et x_2 (éventuellement égales dans le cas d'une racine double) alors, $S = x_1 + x_2 = -\frac{b}{a}$ et $P = x_1 \times x_2 = \frac{c}{a}$.

 \longrightarrow démonstration

Exercice 2: On peut le vérifier sur l'exemple $x^2 - 3x + 2 = 0$

On a également une sorte de réciproque :

Proposition 2: (HP) Si deux nombres ont pour somme S et pour produit P alors ils sont solutions de l'équation $X^2 - SX + P = 0$.

 \longrightarrow démonstration

Exercice 3: Déterminer les valeurs possibles pour deux nombres x et y dont la somme fait 5 et le produit 3.

On peut toujours factoriser un trinôme qui a des racines :

Théorème 2 : Si le trinôme $ax^2 + bx + c$ admet deux racines x_1 et x_2 (éventuellement égales) alors, $\forall x \in \mathbb{R}, \ ax^2 + bx + c = a(x - x_1)(x - x_2).$

 \longrightarrow démonstration

Exercice 4 : On peut le vérifier sur l'exemple $-2x^2 - 3x + 4 = 0$.

Ann'ee~2005-2006 $1^{\grave{e}re}S$

4) Signe du trinôme

Dans chacun des trois cas pour Δ on peut déterminer le signe du trinôme en fonction de x grâçe à la forme canonique.

- Si $\Delta < 0$: $a\left[\left(x + \frac{b}{2a}\right)^2 \frac{\Delta}{4a^2}\right]$ est du signe de a et donc $ax^2 + bx + c$ aussi.
- Si $\Delta = 0$: $a\left[\left(x + \frac{b}{2a}\right)^2\right]$ est aussi du signe de a sauf pour $x = -\frac{b}{2a}$ (il est alors nul).
- Si $\Delta > 0$: $ax^2 + bx + c = a(x x_1)(x x_2)$ et ainsi pour déterminer son signe il suffit de faire un tableau de signes :

X	$-\infty$ x	\dot{z}_1 λ	ι_2 $+\infty$
$(x-x_1)$	- () +	+
$(x-x_2)$	-	-	+
$(x-x_1)(x-x_2)$	+ () - () -
$ax^2 + bx + c$	signe de a () signe de $-a$ ($\mathfrak g$ signe de a

→ penser à multiplier par a

On peut ainsi résumer la situation dans le théorème suivant :

Théorème 3 : De la forme canonique du trinôme, on déduit :

Si $\Delta < 0$, $ax^2 + bx + c$ est toujours du signe de a.

Si $\Delta = 0$, $ax^2 + bx + c$ est toujours du signe de a sauf pour $x = -\frac{b}{2a}$ (il est alors nul).

Si $\Delta > 0$, $ax^2 + bx + c$ est :

- du signe de a à l'extérieur des racines.
- du signe de -a à l'intérieur des racines.

Ce qui donne sous forme de tableau

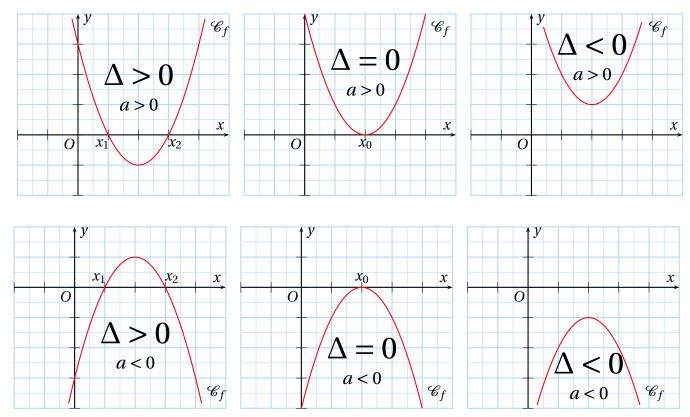
X	$-\infty$	3	\mathfrak{r}_1		x_2	+\infty)
$ax^2 + bx + c$		signe de a	0	signe de $-a$	0	signe de a	

5) Interprétation géométrique

On considère la fonction $f: \left\{ \begin{array}{ll} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & ax^2 + bx + c \end{array} \right.$ et on appelle \mathscr{C}_f sa courbe représentative dans un repère orthonormé.

On peut retrouver les résultats des théorèmes précédents sur \mathscr{C}_f :

Année 2005-2006 1^{ère} S



Exercice 5 : Vérifier que cela marche sur les fonctions associées aux 4 exemples de $x^2 - 3x + 2 = 0$, $2x^2 + 4x + 2 = 0$, $-2x^2 - 3x + 4 = 0$ et $-3x^2 + 2x - 2 = 0$.

II. Polynômes

1) Définition

On commence par définir les fonctions polynômes qui sont des outils très utiles en Analyse.

Définition 3 : Une fonction polynôme est une fonction $P: \mathbb{R} \mapsto \mathbb{R}$ telle que

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{k=0}^n a_k x^k.$$

où a_0 , a_1 , ..., a_n sont des nombres réels et où $n\in\mathbb{N}$.

Vocabulaire: Les nombres réels a_0 , a_1 , ..., a_n s'appellent coefficients du polynôme P.

On lit a « indice » n.

Le nombre $a_n x^p$ s'appelle le terme de degré p du polynôme P.

Exemple: $f(x) = x^2 - 2x + 1$, • $g(x) = -2 + 5x - 3^5$,

• h(x) = 21..

Ann'ee~2005-2006 $1^{\`ere}S$

2) Degré

Définition 4 : Si $a_n \neq 0$, n est le degré de P. On note $n = \deg P$.

Remarque : Un polynôme constant non nul $(\forall x \in \mathbb{R}, P(x) = a_0 \neq 0)$ a pour degré 0. Le polynôme nul n'a pas de degré.

Propriété 2 : Si P et Q sont deux polynômes non nuls, alors $\deg PQ = \deg P + \deg Q$.

Théorème 4 : (Admis) On a l'équivalence suivante $P = Q \Leftrightarrow \begin{cases} \deg P = \deg Q \\ \text{les coefficients de } P \text{ et } Q \text{ sont identiques} \end{cases}$

→ démonstration faisable avec les limites

Corollaire 1: Un polynôme est nul si et seulement si tous ses coefficients sont nuls. Plus précisément, si pour tout x réel on a : $P(x) = a_n x_n + a_{n-1} x_{n-1} + \dots + a_1 x + a_0 = 0 \iff a_0 = 0, \ a_1 = 0, \dots, \ a_n = 0.$

3) Factorisation

Définition 5 : Soit P un polynôme de degré $n \ge 1$. On appelle racine (ou zéro) de P tout nombre a tel que P(a) = 0.

Définition 6 : On dit qu'un polynôme P est factorisable par (x-a) s'il existe un polynôme Q tel que pour tout x réel : P(x) = (x-a) Q(x)

Avec ces définitions on a le théorème fondamental suivant :

Théorème 5: (HP) a est racine de $P \Leftrightarrow P$ est factorisable par (x-a).

 \longrightarrow démonstration : Si a est racine de P, P(a)=0 donc $P(x)=P(x)-P(a)=\ldots$ et $x^n-a^n=(x-a)\left(x^{n-1}+ax^{n-2}+\cdots+a^{n-2}x+a^{n-1}\right)$

Remarque : $\begin{cases} \deg P = n \\ P(x) = (x - a) \ Q(x) \end{cases} \Rightarrow \deg Q = n - 1$

Une technique pour factoriser complétement un polynôme est la technique par identification des coefficients.

Exercice 6: Pour factoriser le polynôme $P(x) = x^3 + x^2 - 4x - 4$ il faut connaître au moins une racine. Pour cela on calcule quelques valeurs, par exemple P(0), P(1) et P(-1). Une fois qu'on a une racine on peut écrire P(x) = (x+1)Q(x) où Q est un polynôme de degré 2. On peut écrire $Q(x) = ax^2 + bx + c$ et en développant $(x+1)(ax^2 + bx + c)$ on **doit** retrouver P d'où un système à 3 équations et 3 inconnues à résoudre. P(x) = (x+1)(x+2)(x-2)