Année 2006-2007 1ère SSI1

Chap 8: Suites numériques

I. Vocabulaire et définitions

Le vocabulaire des suites est à très proche de celui des fonctions. En effet, au niveau de la théorie, les suites et les fonctions sont les deux facettes d'un même objet mathématique.

1) Définitions

Définition 1 : Une suite numérique u est une application de \mathbb{N} dans \mathbb{R} u : $\begin{align*}{l} \mathbb{N} \to \mathbb{R} \\ n \mapsto u_n \end{align*}$.

La suite u est souvent notée $(u_n)_{n\in\mathbb{N}}$ ou plus simplement (u_n) .

Remarque : u_0 est appelé le premier terme, u_1 le deuxième terme et de manière générale u_n est appelé le (n+1)-ième terme.

Définition 2 : En général, une suite est définie :

• Soit de manière explicite (on peut calculer u_n en fonction de n)

Exemple: $u_n = \frac{(-1)^n}{n}$.

Cas particulier : $u_n \stackrel{n}{=} f(n)$ avec f une fonction connue.

Exemple: $u_n = \sqrt{n}$.

 $\bullet~$ Soit par récurrence (on calcule u_n de proche en proche)

Exemple : $u_0 = 2$ est donné et $u_{n+1} = 2u_n - 1$ pour tout n,

alors on peut calculer les termes $u_1 = 3, u_2 = 5 \dots$

2) Sens des variations

Définition 3: • (u_n) est croissante si et seulement si, pour tout entier $n: u_{n+1} \geqslant u_n$.

- (u_n) est décroissante si et seulement si pour tout entier $n: u_{n+1} \leq u_n$.
- (u_n) est monotone si et seulement si (u_n) est croissante ou décroissante.

Année 2006-2007 1ère SSI1

Il existe plusieurs méthodes pour déterminer le sens de variation (éventuel) d'une suite (u_n) :

Méthodes Pour étudier les variations d'une suite (u_n) , on peut :

- Comparer u_{n+1} et u_n .
- Etudier le signe de $u_{n+1} u_n$.
- Si $u_n > 0$ pour tout n, comparer $\frac{u_{n+1}}{u_n}$ avec 1.
- Si $u_n = f(n)$, utiliser les variations de $x \mapsto f(x)$.

3) Suites bornées

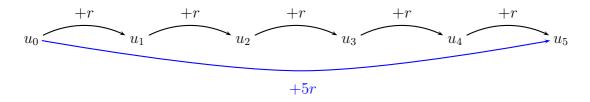
Définition 4: • (u_n) est majorée s'il existe $M \in \mathbb{R}$ tel que pour tout entier $n : u_n \leq M$.

- (u_n) est minorée s'il existe $m \in \mathbb{R}$ tel que pour tout entier $n : u_n \geqslant m$.
- (u_n) est bornée si (u_n) est à la fois majorée et minorée.

II. Suites arithmétiques

1) Définition

Définition 5 : On appelle suite arithmétique toute suite (u_n) telle que pour tout entier n on ait $u_{n+1} - u_n$ constant et on note souvent r cette constante. r est appelé la raison de la suite.



Exemple : La suite (u_n) définie par $u_0 = 2$ et $u_{n+1} = u_n + 2$ est arithmétique.

Proposition 1 : En fait si la suite (u_n) est arithmétique de premier terme u_0 et de raison r on a pour tout $n : u_n = u_0 + nr$.

 \longrightarrow démonstration avec le « raisonnement par récurrence ».

Année 2006-2007 1ère SSI1

Proposition 2 : Si (u_n) est une suite arithmétique de raison r alors :

- si r < 0, la suite (u_n) est une suite décroissante;
- si r = 0, la suite est constante;
- si r > 0, la suite (u_n) est une suite croissante.

 $\longrightarrow d\acute{e}monstration$

2) Somme de termes consécutifs

Théorème 1 : Soit (u_n) une suite arithmétique de raison r.

On définit
$$S_n$$
 par $S_n = u_0 + u_1 + \dots + u_{n-1} + u_n = \sum_{k=0}^n u_k$.

On a alors:
$$S_n = (n+1) \left(\frac{u_0 + u_n}{2} \right)$$
.

 \longrightarrow démonstration

Remarque: On peut réécrire cette formule « en français » :

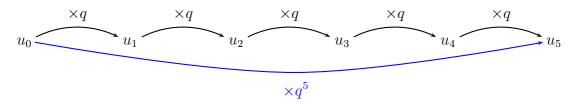
$$S_n = (\text{nb de termes}) \times \frac{1^{\text{er}} \text{terme} + \text{dernier terme}}{2}.$$

Exemple: On a l'exemple fondamental : $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$.

III. Suites géométriques

1) <u>Définition</u>

Définition 6 : On appelle suite géométrique toute suite (v_n) telle que pour tout entier n on ait $v_{n+1} = q \times v_n$. q est appelé la raison de la suite.



Exemple : La suite (u_n) définie par $u_0 = -1$ et $u_{n+1} = -2u_n$ est géométrique.

Proposition 3 : En fait si la suite (v_n) est géométrique de premier terme v_0 et de raison q on a pour tout $n: v_n = v_0 q^n$.

Proposition 4: Si (v_n) est une suite géométrique de raison q alors :

- si q > 1: la suite (v_n) est une suite décroissante si $v_0 < 0$ et (v_n) est une suite croissante si $v_0 > 0$;
- si 0 < q < 1: la suite (v_n) est une suite croissante si $v_0 < 0$ et (v_n) est une suite décroissante si $v_0 > 0$;
- sinon la suite (v_n) n'est ni croissante ni décroissante.
 - $\longrightarrow d\acute{e}monstration$

2) Somme de termes consécutifs

Théorème 2:

Soit (v_n) une suite géométrique de raison q.

On définit
$$S_n = v_0 + v_1 + \dots + v_{n-1} + v_n = \sum_{k=0}^n v_k$$
.

On a alors:
$$S_n = v_0 \frac{1 - q^{n+1}}{1 - q}$$
.

 \longrightarrow démonstration

Remarque: On peut réécrire cette formule « en français »:

$$S_n = (1^{\text{er}} \text{terme}) \times \frac{1 - \text{raison}^{\text{nb}} \text{ de termes}}{1 - \text{raison}}.$$

Exemple: On a par exemple: $1 + 2 + \dots + 2^n = 1 \times \frac{1 - 2^{n+1}}{1 - 2} = 2^{n+1} - 1$.

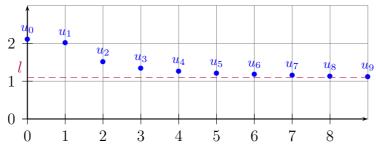
1^{ère}SSI1 Année 2006-2007

IV. Limites et convergence des suites

1) Définition

Définition 7: On dit qu'une suite (u_n) est convergente vers un nombre l si elle admet l comme limite quand n tend vers $+\infty$, on note alors $\lim_{n\to+\infty} u_n = l$.

Dans le cas contraire on dit que la suite (u_n) est divergente (si $\lim_{n\to+\infty} u_n = \pm \infty$ ou si la suite (u_n) n'a pas de limite.)



On peut donner pour les suites une définition « rigoureuse » de la notion de limite :

Définition 8 : Pour *l* un <u>nombre</u> réel.

On dit que si tout intervalle ouvert contenant l contient tous les termes de la suite à partir d'un certain rang.

 $\lim_{n \to +\infty} u_n = +\infty$ Définition 9 : De manière analogue on peut dire que si tout intervalle du type $a; +\infty$ contient tous les termes de la suite à partir d'un certain rang.

Remarque: Les théorèmes sur la limite d'une somme, d'un produit ou d'un quotient énoncés pour les fonctions restent valables pour toutes les suites.

Propriétés 2)

Théorème 3: Soit f une fonction définie sur un intervalle du type $[b; +\infty[$ et soit (u_n) définie par $u_n = f(n)$, alors :

Si $\lim_{x \to +\infty} f(x) = l$ alors (u_n) converge vers l.

Si $\lim_{x \to +\infty} f(x) = +\infty$ alors $\lim_{n \to +\infty} u_n = +\infty$. $\longrightarrow d\acute{e}monstration admise$

Année 2006-2007 1^{ère}SSI1

Exemple: On a par exemple $\lim_{n \to +\infty} n^2 = +\infty$; $\lim_{n \to +\infty} -n^3 = -\infty$ ou $\lim_{n \to +\infty} \sqrt{n} = +\infty$.

Proposition 5: Si une suite (u_n) est croissante:

- si (u_n) est majorée alors la suite est convergente. (admis)
- si (u_n) n'est pas majorée alors $\lim_{n\to+\infty}u_n=+\infty$ et la suite est divergente.
- \longrightarrow démonstration

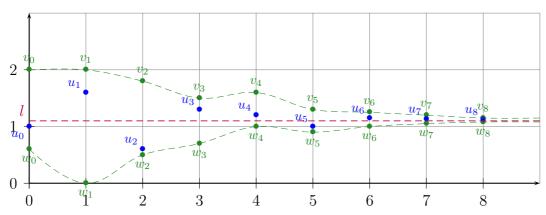
Remarque: On a la propriété équivalente pour les suites décroissantes.

Théorème 4: Théorème des gendarmes

On considère trois suites (u_n) , (v_n) et (w_n) et un nombre l tels que, à partir d'un certain rang, on ait $v_n \leq u_n \leq w_n$ avec $\lim_{n \to +\infty} v_n = l$ et $\lim_{n \to +\infty} w_n = l$.

On a alors $\lim_{n \to +\infty} u_n = l$.

 \longrightarrow démonstration



3) Cas des suites géométriques

Théorème 5 : On considère une suite géométrique (v_n) de premier terme v_0 non nul (sinon la suite est toujours nulle) et de raison q.

- si q > 1 et $v_0 > 0$, alors $\lim_{n \to +\infty} v_n = +\infty$;
- si q > 1 et $v_0 < 0$, alors $\lim_{n \to +\infty} v_n = -\infty$;
- si -1 < q < 1, alors $\lim_{n \to +\infty} v_n = 0$;
- et si q = 1 (v_n) est constante égale à v_0 et $\lim_{n \to +\infty} v_n = v_0$.
- ---- démonstration en exercice.