1^{ère}S SVT Année 2007-2008

Chap 8:

Produit scalaire

Définitions

Rappels: • Si $\overrightarrow{u} = \overrightarrow{AB}$ alors $||\overrightarrow{u}|| = AB$.

• Si $(\overrightarrow{i}; \overrightarrow{j})$ est une base <u>orthonormale</u> et si $\overrightarrow{u}(x, y)$ alors : $\|\overrightarrow{u}\| = \sqrt{x^2 + y^2}$. • On note $(\overrightarrow{AB}; \overrightarrow{AC})$ l'angle <u>orienté</u> délimité par les vecteurs \overrightarrow{AB} et \overrightarrow{AC} .

Définition 1: On appelle produit scalaire des vecteurs \vec{u} et \vec{v} et on note $\vec{u} \cdot \vec{v}$ le nombre réel défini par:

 $\overrightarrow{u}.\overrightarrow{v} = \frac{1}{2} \left(\left\| \overrightarrow{u} + \overrightarrow{v} \right\|^2 - \left\| \overrightarrow{u} \right\|^2 - \left\| \overrightarrow{v} \right\|^2 \right).$

Définition 2: $\vec{u} \cdot \vec{u}$ est le carré scalaire de \vec{u} . On le note \vec{u}^2 .

Remarque: • Si $\overrightarrow{u} = \overrightarrow{0}$ ou $\overrightarrow{v} = \overrightarrow{0}$, alors $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

• On peut noter l'analogie avec la formule : $ab = \frac{1}{2} [(a+b)^2 - a^2 - b^2]$.

En tant que tel cette définition sert peu en 1°S.

Remarque: Un produit scalaire de deux vecteurs est un *nombre*, pas un vecteur.

Théorème 1: Si $(\vec{i}; \vec{j})$ est une base orthonormale et si on a dans cette base $\vec{u}(x, y)$ et $\vec{v}(x', y')$ alors:

$$\overrightarrow{u} \cdot \overrightarrow{v} = x x' + y y'$$
.

II. Propriétés

Proposition 1: (Linéarité)

Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs du plan et $\lambda \in \mathbb{R}$. Alors:

- $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$,
- $\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$,
- $(\lambda \overrightarrow{u}) \cdot \overrightarrow{v} = \lambda (\overrightarrow{u} \cdot \overrightarrow{v}) = \overrightarrow{u} \cdot (\lambda \overrightarrow{v})$,

→ démonstration laissée en exercice

Remarque: On a notamment $\overrightarrow{BA}.\overrightarrow{CD} = -\overrightarrow{AB}.\overrightarrow{CD}$.

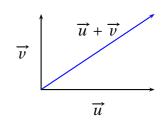
Définition 3: Deux vecteurs \vec{u} et \vec{v} sont *orthogonaux* si et seulement si leur produit scalaire est

$$\vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = 0.$$

Remarque: • Si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$: $\vec{u} \cdot \vec{v} = 0$ et donc $\vec{u} \perp \vec{v}$.

• Si $\overrightarrow{AB} \neq \overrightarrow{0}$ et $\overrightarrow{BC} \neq \overrightarrow{0}$ on a: $\overrightarrow{AB} \perp \overrightarrow{BC} \iff \overrightarrow{AB} \cdot \overrightarrow{BC} = 0 \iff$ $\left\| \overrightarrow{AB} + \overrightarrow{BC} \right\|^2 = \left\| \overrightarrow{AB} \right\|^2 + \left\| \overrightarrow{BC} \right\|^2 \iff AC^2 = AB^2 + BC^2$. Donc d'après la réciproque du théorème de Pythagore :

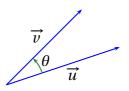
 $(AB) \perp (BC)$. D'où la notation d'orthogonalité.



III. Autres expressions du produit scalaire

Théorème 2: Si $\overrightarrow{u} \neq \overrightarrow{0}$ et $\overrightarrow{v} \neq \overrightarrow{0}$:

$$\left| \overrightarrow{u} \cdot \overrightarrow{v} = \| \overrightarrow{u} \|_{\times} \| \overrightarrow{v} \|_{\times} \cos(\overrightarrow{u}; \overrightarrow{v}) \right|.$$



→ démonstration

Proposition 2: Pour tous points A et B, on a: $AB^2 = \overrightarrow{AB}^2$.

Année 2007-2008 1^{ère} S SVT

Remarque: Si α est la mesure en radian de l'angle géométrique \widehat{BAC} on a : $\alpha = \left| \left(\overrightarrow{AB}; \overrightarrow{AC} \right) \right|$.

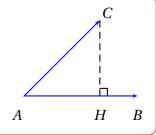
Or,
$$\cos(\alpha) = \begin{cases} \cos((\overrightarrow{AB}; \overrightarrow{AC})) & \sin(\overrightarrow{AB}; \overrightarrow{AC}) \geqslant 0 \\ \cos(-(\overrightarrow{AB}; \overrightarrow{AC})) & \sin(\overrightarrow{AB}; \overrightarrow{AC}) \leqslant 0 \end{cases} = \cos(\overrightarrow{AB}; \overrightarrow{AC})$$

Donc $\cos(\overrightarrow{AB}; \overrightarrow{AC}) = \cos \widehat{BAC}$ et on a donc :

$$\overrightarrow{AB} \times \overrightarrow{AC} = \left\| \overrightarrow{AB} \right\| \times \left\| \overrightarrow{AC} \right\| \times \cos\left(\overrightarrow{AB}; \overrightarrow{AC} \right) = \left\| \overrightarrow{AB} \right\| \times \left\| \overrightarrow{AC} \right\| \times \cos\widehat{BAC}.$$

Théorème 3: Si H est la projection orthogonale de C sur (AB), \overrightarrow{AB} . $\overrightarrow{AC} = \overrightarrow{AB}$. \overrightarrow{AH} et ainsi

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \begin{cases} AB.AH & \text{si } \overrightarrow{AB} \text{ et } \overrightarrow{AH} \text{ ont même sens} \\ -AB.AH & \text{si } \overrightarrow{AB} \text{ et } \overrightarrow{AH} \text{ ont sens contraire.} \end{cases}$$



→ démonstration

IV. Applications du produit scalaire

1) Coordonnées d'un vecteur dans une base orthonormale

Proposition 3: Dans une base orthonormale $(\vec{i}; \vec{j})$, le vecteur \vec{u} a pour coordonnées : $(\vec{u} \cdot \vec{i}; \vec{u} \cdot \vec{j})$.

→ démonstration

2) <u>Vecteur normal à une droite</u>

Définition 4: On dit qu'un vecteur \overrightarrow{n} est *normal* à une droite \mathscr{D} si $\overrightarrow{n} \neq \overrightarrow{0}$ et si \overrightarrow{n} est orthogonal à la direction de \mathscr{D} .

Proposition 4: Soit \mathcal{D} une droite passant A et de vecteur normal \overrightarrow{n} . On a l'équivalence :

$$M \in \mathscr{D} \iff \overrightarrow{n} \cdot \overrightarrow{AM} = 0.$$

→ démonstration

Proposition 5: Soit \mathcal{D} une droite d'équation ux + vy + w = 0 dans un repère orthonormal. Le vecteur $\overrightarrow{n}(u; v)$ est normal à \mathcal{D} .

→ démonstration

3) Cercle

Théorème 4 : Dans un repère orthonormal, le cercle de centre $\Omega(x_0; y_0)$ et de rayon R a pour équation :

$$(x-x_0)^2 + (y-y_0)^2 = R^2.$$

→ démonstration

Proposition 6: Le cercle de diamètre [AB] est l'ensemble des points M tels que :

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = 0.$$

→ démonstration

4) Relations dans le triangle

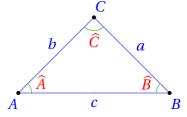
Théorème 5: (Al-Kashi et Formule des sinus)

Avec les notations de la figure ci-contre, si S désigne l'aire du triangle ABC :

$$a^{2} = b^{2} + c^{2} - 2bc \cdot \cos \widehat{A}$$

$$b^{2} = c^{2} + a^{2} - 2ac \cdot \cos \widehat{B}$$

$$c^{2} = a^{2} + b^{2} - 2ab \cdot \cos \widehat{C}$$
et
$$\frac{a}{\sin(\widehat{A})} = \frac{b}{\sin(\widehat{B})} = \frac{c}{\sin(\widehat{C})} = \frac{abc}{2S}.$$



→ démonstration (Il faut faire attention aux angles aigus et obtus.)

Remarque: On peut réécrire la formule des sinus comme suit :

$$S = \frac{1}{2}bc\sin(\widehat{A}) = \frac{1}{2}ac\sin(\widehat{B}) = \frac{1}{2}ab\sin(\widehat{C}).$$

Année 2007-2008 1^{ère} S SVT

Théorème 6: théorème de la médiane

Soient A et B deux points et I le milieu de [AB]. Pour tout point M du plan on a :

$$MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$$
.



→ démonstration

5) Lignes de niveau

Définition 5: La *ligne de niveau* λ de l'application f est l'ensemble des points M du plan tels que $f(M) = \lambda$.

Quelques indications pour déterminer certaines lignes de niveau :

- Pour l'application $f(M) = AM \cdot \vec{u}$: on pose $\vec{u} = \overrightarrow{AB}$ et on construit H le projeté de M sur (AB). On a alors $f(M) = \pm AH \cdot AB$ d'où la position unique de H puis par construction de M: M est sur la perpendiculaire à (AB) é passant par le point unique H.
- Pour l'application $f(M) = MA^2 + MB^2$: on note I le milieu de [AB] et alors on a $f(M) = 2MI^2 + \frac{1}{2}AB^2$. Si $\lambda < \frac{1}{2}AB^2$ il n'y a pas de solution sinon l'ensemble des points M est un cercle de centre I (et de rayon calculable).
- Pour l'application $f(M) = MA^2 MB^2$: on note I le milieu de [AB] et alors on a $f(M) = 2\overrightarrow{MI} \cdot \overrightarrow{BA}$. On se retrouve alors dans un cas du type $f(M) = \overrightarrow{AM} \cdot \overrightarrow{u}$.
- Pour l'application $f(M) = \overrightarrow{MA} \cdot \overrightarrow{MB}$: on note I le milieu de [AB] et alors on a $f(M) = MI^2 \frac{1}{4}AB^2$. Si $\lambda < -\frac{1}{4}AB^2$ il n'y a pas de solution sinon l'ensemble des points M est un cercle de centre I (et de rayon calculable).